Synthesis and properties of heterocyclic β -nitronitrone: 1,2,2,5,5-pentamethyl-4-nitromethyl-3-imidazoline 3-oxide

V. A. Reznikov, * L. A. Vishnivetskaya, and L. B. Volodarsky

Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, 9 ul Akad. Lavrent'eva, 630090 Novosibirsk, Russian Federation.

Fax: +7 (383) 235 4752

The reaction of methyl nitrone, a derivative of 3-imidazoline 3-oxide, with methyl nitrate in the presence of PhLi results in β -nitronitrone. The tnteraction of the latter with electrophiles involves, as a rule, the methylene group. Nitrile oxide, which is an 3-imidazoline 3-oxide derivative, has been generated by thermolysis of *gem*-nitrooxime. This easily dimerizes to furoxan or undergoes regioselective 1,3-dipolar cycloaddition with alkenes.

Key words: nitrone, β -nitronitrone, β -imidazoline β -oxide, nitrile oxide, cycloaddition, nitroxyl radical.

Previously we demonstrated that the reaction of 1-hydroxy-2,2,4,5,5-pentamethyl-3-imidazoline with methyl nitrate in the presence of PhLi results in nitroenamine 1 (cf. Ref. 1), which reacts with electrophilic reagents at one or two of the three reaction centers, viz., the enamine C atom, the O atom of the nitro group, or the N atom of the heterocycle, 1-3 and serves as the starting compound for synthesizing various functionally substituted nitroxyl radicals.

It should be noted that nitroenamines are a well studied class of organic compounds, unlike their close analogs, β -nitronitrones. There are almost no data on the reactivity of the latter.

It is known that the treatment of 3-imidazoline 3-oxide (2) with PhLi gives a metallated derivative, which readily reacts with esters to give β-oxonitrones.⁵ Under similar conditions, the reaction of compound 2 with methyl nitrate in the presence of PhLi results in nitronitrone 3. In contrast to nitroenamine 1 (cf. Ref. 1) and β-oxonitrones of similar structure (cf. Ref. 6), compound 3 exists in DMSO and CDCl₃ solutions exclusively in the nonconjugated nitronitrone form. Thus, the ¹H NMR spectrum in CDCl₃ displays singlets at δ 1.20 (6 H) and 1.40 (6 H) for the 2,5-gem-dimethyl groups, at δ 2.32 (3 H) for the N-CH₃ groups, and at 5.17 (2 H) for the CH₂ group. The ¹³C spectrum contains, inter alia, signals for the carbon atom of the nitrone group at δ 135.09 and for the CH₂ group at δ 66.71. The patterns of the spectra do not change on going to a DMSO solution.

In the present work some properties of compound 3 were studied. Nitrone 3 reacts with electrophiles like nitroenamine 1, although the reaction has some features typical of the β -nitronitrone group. For example, the bromination and nitrosation of 3 occur, as expected, at

the methylene carbon atom to give bromo-derivatives **4,5** and nitrooxime **6**, respectively (*cf.* Ref. 1). It should be noted that, according to the ¹H NMR spectral data, the monobromo-derivative **4** also exists in the nonconjugated nitronitrone form. The reaction of compound **3** with formaldehyde in the presence of amines gives alcohol **7**, which readily undergoes dehydration on silica gel to afford nitroolefin **8** (*cf.* Ref. 2).

Previously we showed that the reaction of nitroenamine 1 with acid chlorides results in O-acylhydroximoyl chlorides.³ However, compound 3 reacts with benzoyl chloride under similar conditions to give compound 9, which is, according to the elemental analysis data, a dibenzoylation product. The IR spectrum of compound 9 displays bands at 1760 and 1780 cm⁻¹ (COOR) and at 1590, 1600, and 1610 cm^{-1} (C=C and C=N). The ¹H NMR spectrum of compound 9 contains signals of five methyl groups at δ 1.47 (6 H), 1.50 (6 H), and 2.31 (3 H) and a multiplet for protons of two phenyl groups with a center at δ 7.7. Based on these data, the structure of a dibenzoyl derivative of a hydroximic acid was assigned to compound 9. The formation of 9 can be represented by a scheme including the initial attack at the O atom of the nitro group, the elimination of PhCO₂H to give nitrile oxide 10 (cf. Ref. 3), followed by the addition of PhCO₂H and additional benzoylation.

It is known that the thermolysis of geminal nitrooximes is a mild method for generating derivatives of nitrile oxides. Compound 6 is thermally unstable and readily eliminates an HNO₂ molecule on heating to 80 °C in nonpolar organic solvents to give nitrile oxide 10 (Scheme 2), which under these conditions dimerizes to give furoxan 11 in the absence of substrates containing C=C bonds (cf. Ref. 7). It should be noted that the

Scheme 1

imidazoline ring. The signals were assigned on the basis

of their multiplicity. It is noteworthy that the cycloaddi-

tion reaction with styrene results in nitrooxime 13 along

in the presence of Na₂WO₄ to give nitroxyl radical 14.

This makes it possible to consider nitrooxime 6 as a

synthon for introducing a spin label to a substrate mole-

Cycloadduct 12b readily undergoes oxidation by H_2O_2

formation of nitrile oxide 10 as an intermediate product of the reaction of the respective geminal chlorooxime with nucleophilic reagents has been postulated previously 8 but has not been unambiguously confirmed.

The thermolysis of nitroxime **6** in the presence of methyl acrylate, acrylonitrile, or styrene results in cycloadducts **12**. In all cases the reaction proceeds regioselectively to give only a 5-substituted isomer (*cf.* Ref. 9). For example, the ¹³C NMR spectrum of adduct **12a** (CDCl₃) contains signals at δ 39.83 (CH₂-4'), 52.49 (CO₂CH₃), 77.65 (CH-5'), 148, and 169.98 (C=N and C=O) along with signals for the carbon atoms of the

Scheme 2

8, and 169.98 (C=N and the Experimental

with cycloadduct 12c.

cule containing a C=C bond.

 $R = CO_2CH_3$ (a), CN (b), C_6H_5 (c)

IR spectra were recorded on Specord M-80 and UR-20 spectrophotometers in KBr pellets (concentration 0.25 %) and in solutions (CCl₄ and CHCl₃, concentration 5 %). UV spectra were recorded on a Specord UV-VIS spectrometer in ethanol. ¹H and ¹³C NMR spectra were obtained on a Bruker AC-200 spectrometer in CDCl₃ (concentration 5 %). The characteristics of the compounds synthesized are presented in Table 1, and the ¹H NMR spectral data appear in Table 2. Imidzoline 2 was obtained by the known procedure ¹⁰

Imidazoline 2 was obtained by the known procedure. ¹⁰
1,2,2,5,5-Pentamethyl-4-nitromethyl-3-imidazoline 3-oxide (3). A solution of imidazoline 2 (3.4 g, 20 mmol) in abs. ether (10 mL) was added dropwise with stirring to a solution of phenyllithium prepared from bromobenzene (4.2 mL, 40 mmol) and lithium (0.56 g, 80 mg-at) in abs. ether (50 mL). The mixture was stirred for 20 min at 20 °C, then methyl nitrate (2.5 mL, 40 mmol) was added dropwise with cooling to 0 °C. Stirring was continued for 20 min at 20 °C, water (20 mL) was added, and the ethereal solution was separated. The aqueous solution was washed with ether (3×15 mL) and neutralized with 10 % HCl, and the product was extracted with CHCl₃ (3×30 mL). The extract was dried with MgSO₄, the solution was concentrated, the residue was washed with

Table 1. Characteristics of the compounds synthesized

Com- pound	Yield (%)	M.p.* /°C	IR (KBr), v/cm ⁻¹	UV, $\lambda_{max}/nm \ (log \ \epsilon)$	Molecular formula	Found (%)		
						С	Н	N
3	50	145—147	1600 (C=N), 1360, 1580 (NO ₂)	242 (4.03)	C ₉ H ₁₇ N ₃ O ₃	<u>50.5</u> 50.5	8.1 7.9	19.5 19.5
4	65	136—137	1600 (C=N), 1345, 1580 (NO ₂)	258 (3.95)	$C_9H_{16}BrN_3O_3^{**}$	36.8 36.7	<u>5.5</u> 5.4	<u>14.1</u> 14.3
5	70	108—110	1590 (C=N), 1350, 1565 (NO ₂)	270 (3.75)	$C_9H_{15}Br_2N_3O_3^{**}$	<u>29.1</u> 29.0	4.1 4.0	11.1 11.3
6	100	103—104	1645, 1595 (C=N), 1325, 1545 (NO ₂)	238 (4.06) 342 (4.02)	$C_9H_{16}N_4O_4$	<u>42.2</u> 42.7	<u>6.2</u> 5.9	<u>21.9</u> 22.1
7	30	173—175	1605 (C=N), 1370, 1570 (NO ₂)	235 (3.90)	$C_{10}H_{19}N_3O_4$	48.8 49.0	7.5 7.7	17.3 17.2
8	10	119—121	1605 (C=N), 1375, 1570 (NO ₂)	233 (3.81) 360 (3.97)	$C_{10}H_{17}N_3O_3$	<u>52.5</u> 52.9	$\frac{7.7}{7.5}$	18.2 18.5
9	60	114—115	1780, 1760 (C=O), 1610, 1585 (C=N)	227 (4.36) 384 (3.82)	$C_{23}H_{25}N_3O_5$	65.2 65.2	<u>5.9</u> 5.9	10.0 10.0
11	75	208—209	1550, 1590 (C=N)	243 (3.92) 287 (4.00)	$C_{18}H_{30}N_6O_4$	<u>54.7</u> 54.8	7.6 7.6	<u>21.1</u> 21.3
12a	50	98—99	1740 (C=O) 1520, 1550 (C=N)	294 (4.14)	$C_{13}H_{21}N_3O_4$	<u>55.2</u> 55.1	7.7 7.4	14.5 14.8
12b	50	114—116	2245 (C=N), 1540, 1555 (C=N)	295 (4.16)	$C_{12}H_{18}N_4O_2$	<u>57.2</u> 57.6	$\frac{7.0}{7.2}$	22.4 22.4
12c	60	115—116	1560 (C=N)	292 (4.13)	$C_{17}H_{23}N_3O_2$	67.8 67.8	7.7 7.6	13.9 14.0
14	60	179—181	2250 (C=N), 1525, 1555 (C=N)	_	$C_{11}H_{15}N_3O_3$	5 <u>5.8</u> 55.7	<u>6.4</u> 6.4	17.6 17.8

^{*} Compounds 3–5 were purified by recrystallization from a hexane—ethyl acetate mixture. Compounds 7–14 were purified by recrystallization from hexane. Compound 6 had the correct elemental analysis data without purification. ** Br, Found/Calculated (%): 26.8/27.2 (4), 42.4/42.9 (5).

hexane, and the precipitate of compound 3 was filtered off. 13 C NMR (CDCl₃), δ : 23.41, 23.63 (2,5-(CH₃)₂); 26.65 (N-CH₃); 62.60 (C-5); 66.71 (-CH₂NO₂); 90.51 (C-2);

Table 2. ¹H NMR spectral data for the compounds synthesized

Com-		6 (CDCl ₃), <i>J/</i> Hz	
pound	N-CH ₃	2-CH ₃	5-CH ₃	4-R
3	2.32	1.40	1.20	5.17 (2 H)
4	2.36	1.30 1.43	1.42	6.74 (1 H)
9	2.31	1.50	1.47	7.7 (m, 1 OH, Ph)
12a	2.35	1.42	1.42	3.75 (s, 3 H, OCH ₃); 3.9 (m, 2 H, -CH ₂), 5.04 (m, 1 H, CH)
12b	2.37	1.42 1.44	1.43 1.49	ABX-system, $4.01 (J_{AB} = 19, J_{AX} = J_{BX} = 6, 2 H, AB, 5.24$ (dd, $J_{AX} = 6, 1 H$)
12s	2.37	1.44 1.47	1.46 1.49	3.66 (dd, $J_{AB} = 18$, $J_{AX} = 9$, 1 H), 4.08 (dd, $J_{AB} = 18$, $J_{BX} = 9$, 1 H) 5.63 (t, $J = 9$, 1 H, 7.32 (br.s, 5 H, C_6H_5)

135.09 (C-4). ¹³C NMR (DMSO-d₆), δ: 23.07, 23.52 (2,5-(CH₃)₂); 26.69 (N-CH₃); 62.57 (C-5); 67.60 (-CH₂NO₂); 89.70 (C-2); 135.63 (C-4).

4-Bromonitromethyl-1,2,2,5,5-pentamethyl-3-imidazoline 3-oxide (4). A solution of bromine (0.1 mL, 2 mmol) in methanol (5 mL) was added dropwise with stirring to a solution of nitronitrone 3 (0.43 g, 2 mmol) in 10 mL of a methanolic solution of sodium methoxide prepared from sodium (0.05 g, 2 mg-at) and methanol (10 mL). The solution was concentrated, the residue was washed with water, and the precipitate of compound 4 was filtered off and dried. An additional amount of compound 4 was obtained by extracting the aqueous solution with CHCl₃.

When the amounts of sodium methoxide and bromine were doubled, dibromo-derivative 5 was obtained under similar conditions.

4-Hydroxyiminonitromethyl-1,2,2,5,5-pentamethyl-3-imidazoline 3-oxide (6). Aqueous HCl (5 %, 25 mL) was added dropwise with cooling to 0 °C and stirring to a solution of nitronitrone 3 (0.43 g, 2 mmol) and NaNO₂ (0.17 g, 2.5 mmol) in 10 % aqueous NaOH (10 mL). Stirring was continued for 30 min at 20 °C, and the precipitate of nitroxime 6 was filtered off, washed with water, and dried.

4-(2-Hydroxy-1-nitroethyl)-1,2,2,5,5-pentamethyl-3-imidazoline 3-oxide (7) and 1,2,2,5,5-pentamethyl-4-(1-nitrovinyl)-3-imidazoline 3-oxide (8). A solution of nitronitrone 3 (0.43 g, 2 mmol), 30 % formaldehyde (1 mL), and diethylamine (0.65 mL, 6.3 mmol) in methanol (10 mL) was

kept for 30 min at 20 °C, concentrated, and diluted with water (10 mL). The products were extracted with CHCl₃, the extract was dried with MgSO₄, and the solution was concentrated. Compounds 7 and 8 were separated by chromatography on a column with silica gel using CHCl₃ as the eluent. Compound 8 was eluted first.

O, O'-Dibenzoyl-1,2,2,5,5-pentamethyl-3-imidazoline-4-carbohydroximic acid 3-oxide (9). A solution of benzoyl chloride (0.86 mL, 7.5 mmol) in CHCl₃ (5 mL) was added dropwise with cooling to 0 °C and stirring to a solution of nitronitrone 3 (0.65 g, 3 mmol) and triethylamine (1.04 mL, 7.5 mmol) in CHCl₃ (30 mL). The solution was concentrated, the residue was washed with dry ether (5×20 mL), and the precipitated salts were filtered off. The solution was concentrated, the residue was washed with hexane, and the precipitate of compound 9 was filtered off.

3,4-Bis(1,2,2,5,5-pentamethyl-3-imidazoline 3-oxide-4-yl)-1,2,5-oxadiazole 2-oxide (11). A suspension of nitrooxime 6 (0.49 g, 2 mmol) in benzene (50 mL) was heated to 80 °C over 30 min while a flow of argon passed through the solution. The mixture was kept for 10 min at this temperature, and the solution was concentrated. Compound 11 was isolated by chromatography on a column with silica gel using CHCl₃ as the eluent.

Under similar conditions, thermolysis in the presence of methyl acrylate, acrylonitrile, or styrene (5 mmol) gives 4-(5-R-2-isoxazolin-3-yl)-1,2,2,5,5-pentamethyl-3-imidazoline 3-oxides (12a-c). ^{13}C NMR spectrum for cycloadduct 12a (CDCl₃), δ : 23.95, 24.13 (2,5-(CH₃)₂); 26.59 (N-CH₃); 39.89 (-CH₂-); 52.49 (-CO₂CH₃); 63.75 (C-5); 77.65 (CH-CO₂-); 91.11 (C-2); 136.60 (C-4); 148.46 (C-3'); 169.98 (C=O). ^{13}C NMR spectrum of compound 12c (CDCl₃), δ : 23.99, 24.08, 24.12 (2,5-(CH₃)₂); 26.63 (N-CH₃); 43.31 (-CH₂-); 63.78 (C-5); 82.71 (-CH-O); 90.86 (C-2); 125.68, 128.03, 128.50, 140.09 (C₆H₅); 137.33 (C-4); 148.86 (C-3').

4-(5-Cyano-4,5-dihydroisoxazol-3-yl)-2,2,5,5-tetramethyl-3-imidazoline-1-oxyl 3-oxide (14). A solution of nitrile 12b (0.13 g), 30 % H_2O_2 (0.5 mL), and a catalytic amount of Na_2WO_4 and trilon B in a mixture of methanol (3 mL) and acetonitrile (3 mL) was kept for 15 min at 70 °C. The solu-

tion was diluted with water (20 mL), and the product was extracted with CHCl₃ (5×10 mL). The extract was dried with MgSO₄ and concentrated. Compound **14** was isolated by chromatography on a Silufol-UV 254 plate (20×20 cm) using CHCl₃ as the eluent.

References

- V. A. Reznikov and L. B. Volodarsky, *Zh. Org. Khim.*, 1987, **23**, 214 [*J. Org. Chem. USSR*, 1987, **23** (Engl. Transl.)].
- V. A. Reznikov and L. B. Volodarsky, Khim. Geterotsikl. Soedin., 1987, 1101 [Chem. Heterocycl. Comp. USSR, 1987 (Engl. Transl.)].
- V. A. Reznikov, L. A. Vishnivetskaya, and L. B. Volodarsky, Izv. Akad. Nauk SSSR, Ser. Khim., 1991, 444 [Bull. Acad. Sci. USSR, Div. Chem. Sci., 1991, 40, 382 (Engl. Transl.)].
- 4. S. Rajappa, Tetrahedron, 1981, 37, 1453.
- V. V. Martin and L. B. Volodarsky, Izv. Akad. Nauk SSSR, Ser. Khim., 1979, 1336 [Bull. Acad. Sci. USSR, Div. Chem. Sci., 1979, 28 (Engl. Transl.)].
- V. A. Reznikov and L. B. Volodarsky, Khim. Geterotsikl. Soedin., 1991, 192 [Chem. Heterocycl. Compd. USSR, 1991 (Engl. Transl.)].
- 7. L. I. Khmel'nitskii, S. S. Novikov, and T. I. Godovikova, in *Khimiya furoksanov. Stroenie i sintez [Chemistry of Furoxans. Structure and Synthesis*], Nauka, Moscow, 1981, 125 (in Russian).
- 8. V. V. Martin, L. A. Vishnivetskaya, I. A. Grigor'ev, S. A. Dikanov, and L. B. Volodarsky, *Izv. Akad. Nauk SSSR, Ser. Khim.*, 1985, 1616 [Bull. Acad. Sci. USSR, Div. Chem. Sci., 1985, 34, 1477 (Engl. Transl.)].
- G. Bianchi, C. De Micheli, and R. Gandolfi, Chemistry of Double-bonded Functional Groups, Suppl. A., Part 1, Ed. S. Patai, Interscience, New York, 1977, Ch. 6, 369.
- V. V. Martin and L. B. Volodarsky, Khim. Geterotsikl. Soedin., 1979, 103 [Chem. Heterocycl. Compd. USSR, 1979 (Engl. Transl.)].

Received March 19, 1993